
AD A039 73$ FEDERAL COBOl. COMPILER TESTINS SERVICE WASHTNSTON 0 C F/$ 9~2
SYSTEM FOR EFFICIEN T PROGL.M PQflTABII.ITY,(IJ)
MAY 77 0 N BAIRD. L A JOHNSON

UNCL ASSIFIE D FCCTS/TR 71/0$

;~~-

jr -I

~~~



I C~ 
L~ ~~~H 

~~~~I .)~~ L.

2 2

I I ~ lllH~• IllI~
8

huh
I 25 IIffl~ ~lIIu~

U SI
-. $

I

:

(~~*
1 L~~~~~~~~~~~~’~~.mlt.d

D D C
MAY~~ s 19T7 III

System for efficient program portabilit y
_ _ _

by GEORGE N. BAIRD and L. ARNOLD JOHNSON
~~~D es4 ~‘the Na ry c~—~ BWubington, D.C.

BACKGROUND selection proc.~~, as described above , ranges from nine to
23 months. A significant portion of this time is involved in

The acquisition of major Automatic Data Processing Equip- working with the benchmark . The system we are describing
ment (ADPE) systems in the Department of the Navy is here is designed to reduce th is time.
accomplished by either single source acquisition or com-
petitive selection . ’ In the case of the single source acquisit ion ,
only one vendor is considered as having the system capable USE OF BENCHMARKS IN THE SELECTION
of satisfying the needs of the procuring organization. The PROCESS
criteria which must be satisfied for a single source acquisition
include the need for uni que Iiwlware, excessive conver sion! The benchmark is a vital part of the competitive selection
reprogramming cost and/or time, etc . The competitive er- proces . It becomes the tool for minimum measurement to
lection, on the other hand , is open to any vendor who f~ 4~ 

be used against all systems being considered . Therefore it is
he can provide a system meeting the requirements specified importan t that the benchmark be constructed in such a way
in the solicitation document associated ~~th that ~~~~~~~~~~~~~ 

as to accurately reflect the system requirements being speci-
meat, fled. The system requirements are defined in term s of the

The major steps in the competitive proc~~ are , briefl y, current work ioad and the projected future workload . Properly
as follows: prepared benchmarks will demonstrate that the system being

offered contains adequate memory and peripherals, and that
(1) The requeator prepares a solicitation documen t which the throughput speeds are sufficient to process the projected

explains the requirements of the system being pro- fut~~~ workload . Additionall y, this exercise demonstrates
cured , that the operating system and supporting software are

(2) Benchmark programs are prepared . These will be used operative. From a functional standpoint , the “ideal bench-
to ascertain that vendors participating in the compe- mark” situation could be described as follows :
tition can meet minimal performance standards. Theset programs may be written in various higher Imel (1) The programs would be coded using the language
languages. We will restrict our discussions to COBOL elements defined in the American National Standard
programs. COBOL, so that source code conversion is minimal .

(3) The vendor examines the solicitation document to (2) The implementation of the benchmark programs by

the requirements. trolled environment. This would provide useful infor-
(4) The vendor obtains the benchmark, ~onverta it to ti~ mation as to the impact of converting other programs

determine whether he has a system capable of meeting the various vendors could be monitored as in a eon-

~~1 I  ware /softwa re will be pric~~cmpetitive with the sye- (3) The pro~~~ms have been debugged to the ertent that
system being considered, and determl~es if the )~~~ iJ.. after the new system is deliver ed.

tenis most likely to be offered by his competito rs. they will give predictable results on both the native
(5) The vendor must then demonstrate that the execution and the target machines.

of the benchmark can be accomplished within the (4) The data files would be in a form readily acceptable
time specified in the solici tation document, to all systems, but would at the same time be con-

~~~~~ (6) The award is generally made to the vendor who latent with any given system’s architecture, so that
qualifies with respect to tinmi ~~~~~~~~~~~~~~ --~~ there is no less of e~~cieney, or validity of renilts.j ~~~ to provide the system which meets the needs of the (5) The checking of benchmark processing result. would
user at the lowest overall coat to the Government. be as automated as possible.

The usual amount of time involved in the com petitive Unfortunately, this ideal situation seldom exists. This

I
424 Nation al Computer Conference , 1974

results in excessive time and coat expended on the part of THE SANITATION EFFORT BY THE U.S. N AVY
the ’ vendor in proc essing the benchmark . It is not unusual
her a vendor to spend six to nine calendar months just pre- The Softwar e l)evelopment I)ivisie rn of the Depart i i u n t
paring . the benchmark’ programs for proce ssing, or for the of the Navy Automatic Data Proc essing Equi pment ~~‘li ’rtii~ i
coat of processing them to repre sent 10 percent or more of Office (ADI ’ESO) is looking into methods and technique ’~ for
the eventual bid price. The cost and time related to processing decreasing the amount of time requir ed for compe ’ti l vi
a benchmark causes vendors to be more selective in respond- selection , and lowering the overall cost of the pr ewur ennn t.
ing to requests for proposals (RPP s). This could result in the Aimed with the knowledge ’ of probl ems as.sociat”d with
brat s st em not being offere d.if the vendor feels he may not benchmark techni ques , and in particular the pr oblem S. a.s-
have a good chance of ~~~~~~~~~~

sociated with natural benchmarks , an effort was estab lishcd
to mechanize the preparation of natural benchmarks.

The vehicle we chose (for ease of implementation , with
the necessary docum ented contr ols) was the VP-Ro uti ne

PR EV I O US BENCHMARK EFF ORTh developed by the Navy for automatically resolvi ng imp le-
men tation names within COBOL programs , and generating
the necessary operating system control cards to comp ile ’ and

Little has been done in the area of making the benchmark , execute the programs.’
and , as a result , thc competitive process, more palatable. In Each source program must be purged of non standard
t he past , various methods have been used in presenting the language elements. This is accomplished by automatic core -
benchmark to the vendor. These range from the attitude of version (where possible through simple syntax rep lacement)
“here’ is the benchmark , do with it what you must in order and hand tailoring when additional logic may be requ ired
to make it run on your system, and in the meantime don ’t to handle semantic difference s between two statements . Also,
bother me” to a recent instance where the benchmark and all implemen tor nam es must be resolved , or converted to an
its relat ed data were provided in what could be described as intermediste form . This results in COBOL source programs
“machine’ interchangeable” form (i.e., all data was in DlS.~ that art ’ VP-Routine sensitive in that they can be tailored
PLAY form , several “dange rous” language features were to a given systems requirements by a single pass of the
not used , etc.). This approach is consistent with recommert - VP-ROutine.
dations made by Meltzer and Ickes.’ All data files necessary for input to benchmark programs ,

The effec t of the “don ’t care ” philosophy is that the or output files provided for verification purpo ses, must be
vendor is pennitted to make any changes he desires in carefu lly extracted from the native system and transformed
imp lementing the benchmark. This may destroy the repre- into a form readil y accepta ble to other systems. This must
sentativenetes of the benchmark. At the same time , through be done with no loss of data integrity.
the use of his moat talented programmers and/or analysts, After the source programs and data have been converted ,
a vendor could optimize the programs for faster execution. it is important to insure that the execution of the converted
It is often the case that the talent the vendor is able to turn benchmark programs give the same results as the original
loose on the benchmark is superior to that of the average programs, and that the d&ta has not been adversely affected .
user organization. Ther efore, the credibility of the benchmark This is accomplished by executing the sanitized bench mark
is somewhat lessened, and the timing result s now ~v,neseflt using the ’ sanitized data on both the curren t computer system
more what the vendor’s programming staff can dO tbVi and on other target systems. During the execution of the ’
what was orig inally intended , benchmark it is useful to be able to determine the degree to

The philosophy behind the machine interchange able which the data is exercising the various procedures of each
COBOL calls for no modificstion beizig permitted tO the program. Through the help of a software monitor, in for-
source programs except in the Environment Division. B&n- mation ii provided which will help to further detenninc the
cally, the idea of machine interchangeable COBOL is to ss1eq~~~y of the benchm ark.
eliminate any form of data representation except for ~~~~~~~ The result of the benchmark preparation process would be
data format (e.g., character representation only—no binasy , a viable product that is:
packed decimal, floating point, etc.).

The machine interchangeable approach satisfies the ma- (1) Well documented .
jority of the criteria described in presenting the ideal bench- (2) Checked cut on more than one sy.tssn.
mark ; however there are two comments worth making: (3) E55ilY ilnPlenwfltsble thtougb the use of the VP-

Routine.
(1) The decision to stay with the standard data foimat

m a y force several vendors not to participate; A discuadon of the overall system follows in five maior
manly those with systems not capable of character sections:
addressing sad/or decimal &rlthmetic. Source Program Preparation

(2) The resources used in manually converting the beech- Data Portability
mark package to machine in*erchsn eabie format will Program Monitor
include a substantial amount of manpower and coin- Packaging and Distribution
peter time. IAmitatiosis

System for Efficient Pro~~~m Portability 425

SOURCE PROGRAM PREPARATION repre sentations ire relativel y simp le. Alignme’nt variations
affect the positioning of data within st~ rage u ie i t ~ , partieu-

The source programs that are ’ to make up the benchmark larly in word -orie nted comput er s. . I ’or proper transform ation
are processed by a COBOL to COBOL translator that per- of data from external storag e to internal storage, th e (‘(1BOL
forms three major fun ction s. progra m definition e f this data must ts ’ ‘oflsiste ’nt with the

expected dat a position and alignme nt on the external hi ’s .(I) The Environment Division is rendered VP-Routine
sensitive by the rep lacement of all implementor names
with an encoded mnemonic that has meaning to the Solulion
VP- Routine. These mnemoni cs are later used in pre-
paring the programs for a given system . Generali ly and imp arE ial,ty are ’ prin cipal (h’sign goals of

(2) The source code is examin ed for nonst andard coding, our effort . Our a stern must perform data translation from
and translated when appropriate. Vvher o translation any given system to any other system. Furthe rmore , we
cannot be accomp lished , the translator flags the must not penalize the architectur e of the ’ targ et sy stem.
offending code. Generality implies that the tr anslation programs must be

(3) Based on param eter cards , the file descri pt ions of the automaticall y generated, as opposed to hand-coded. Im-
files to be converted from the native system are used partiality means we must~ go from a machin e dependent
to create an interm ediat e work file containing pseudo form to another machine depen dent form. (ood sense sug-
file/record/field descri ptions. This file is later used to gests we do this through an intermediate machin e m dc-
create Data Tr anslation pr ograms . This is fully dis- pende ’nt code.
cussed in the section entitled Data Portability. We use available software as much as possible. This is

done by using the code conversion subroutines alread y pre sent
The tran slation of one COBOL dialect to another is eon- in a system ’s compiler , together with the data descriptions

ceptua lly simple. The more serious problem involves the in the COBOL programs being convert ed . The data trans-
moving of data from system to system. A detailed discussion lator s which constitut e the heart of the system are auto-
of this problem and a suggested solution follows. matica lly generat ed COBOL progr am segments. These data

translators arc used to convert native machine dependent
data (MDD) to standard data format (SDF), and the latterDATA PORTABILITY to target machine dependent data , which we refer to as
machine ANSI data (MAD). If chara cter code tra nslation isPro blem required , it can be performed on the SDF , since this data
is simply a string of characters.The difference s in the internal repr esentation of data

among comput er systems repre sent the major limitation of
software portability . These differences can be broadly erg- Program creat ion
minted into two categories : Differenc es in the chara cter

differences in the repr esentation of numeric data. Data ferr ed to simply as date ira nsloter s) are created from the
code used (i.e., EI3CDIC , BCD , FIELDATA , etc.), and Data translation /verification programs (henceforth cc-

translators for character code conversion are widely available , file/record descriptions of the COBOL pr ograms being con~or can be easily created. Transferability of the second typ e verted . The data translator s will contain the followi ng
requires more than simple code conver sions, and, therefor e, COBOL file description s (FD ’s):
presents the greater problem. Furthermore , the specific
representation used within this general category will , for a (I) Machine dependent data (MDD) file descri ption s,

which are those used to process the file on the nativegiven computer, seriously impact the effectivences with which machine .that computer is used. Thus , the 53’stem described here (2) S~~~dard data format (SDF) file descriptions, inconcerns itself only with the conversion of noncharacter which all data items are in DISPLA Y mode , unsigneddata from any “native ” computer to any “target” computer, and unsynchron ized .in such a way that the target computer architecture ii (3) Machin e ANSI data (MA D) file descript ions, in whichproperly utilized. all data items arc described in Standard COBOL
~~ Generally, COBOL data portability is impacted by

~~~~~~

- formats.’
within a defined data unit (e.g., a word), and the Position file descriptio ns. This file description is identical to

ations in numeric data repres entation , alignment of data (4) Machine ANSI data for the ta~~~ machine (~fADT)
and representation of arithmetic signs. There are se~ss’al (3) ~~~ve, and is used for file comparison purpo ses.form. of numeric data representation , of which binary and This comparison process is more fully described below.packed decimal are the most common . The packed decimal
format is not universal and may therefore have to be con- Source code MDD item descr iption s which ar e not Stand-
verterd to a completely different type of data structure. Data ard COBOL will be defined by the MAD file descri ption in

vantions and word size do vary , conver sion between binary possible (e.g., COM PU TAT IONAL-3 will become COMPU-
in binary representation ~~e universal, and although sign eon- a form which is as close to the native file description as



/

426 National Computer Conference, 1974

01 MDD-RE cORD.
02 ALPHA NUM ERIC- D P ICTURE X~2o) JI STIF I EI ) RIGHT.

MDD 02 UNSIG NED-I) PICTURE 9(6) OO M PL TAT I ONAL-3
02 SIG NED-D PICTURE 89(6).

01 SDF-RECORD.
02 ALPHA NU MER IC-X PICTURE X(20) .

SDF 02 UNSIG NED-X PICT URE 9(6).
02 SIGNED-S PIC TURE X.
02 SIGNED- X PICTURE 9(6).

01 MAD - RE CO R I .
02 ALPHANUMER I C-A PICTURE X(20 ) J USTIFIED RIGHT.

MAD 02 UNSIGNED- A PICTURE 9(6) COMPUTATIONAL
02 SIGNED-A PICTU RE 89(6).

Fjure 1—E wnple of iseost description uued in a data tranalator program

TATIONAL). Figure 1 illustrates a DATA DIVISION from Data validation and verifi cation procedures are also gener-
a data translation program. Procedures for transl ating from ated. Figures 2 and 3 give examples of the various COBO L
one data form to another and for file comparisons (for data procedures used for data translation, validation , and verifi-
verification purposes) are generated for each elementary field cation (the lat t er two function s are described below).
of the record. There are three data translation procedure Once all the procedures and file description s have been
types, corresponding to alphanumeric data, signed numeric generated , they are merged with appropriate housek eeping
dat a, and unsigned numeric data. The type of procedure COBOL statements , resulting in data tran slators which are
generated is based on the elementar y COBOL item de- complete COBOL programs in VP-R outine sensitive format.
ecription.

Data translation procedures for alphanumeric and unsigned
numeric data require no more than a COBOL MOVE Prog ratn operation
statement. Any changes in the data code, data alignment ,
or storage allocation required in convertin g from one form Since the native source code file descri ptions in the data
to another are performed automatically by the code generated translators may not be acceptable on the target compiler ,
(for the MOVE statement) by the compiler being used . the VP-Routine is used to provide the capabilit y of selecting

To take into account the various sign convention s, COBOL the appropriate source coding for use on the desired system
procedures are added to check the characteristics of signed (target or native). This is accomplished bv parameter cards
numeric data. If tran slation is from a machine depen dent to the VP-Routine. If any minor updat ing to the source
form to a SDF form , the appropriate sign is stored as a programs is required , this capability is also available through
separate character in the SDF data description. If we are the VP-Routine.
performing the reverse process, we first generate the positive Parameter s are used as input to the data translators in
value of the machine dependent data item (through a MOVE order to direct the flow of execution . The t hree categories of
statement), then check the separa te sign character in the funct ions which may be performed are data translat ion,
SDF description, and if minus multiply the machine de- data verification , and data validation.
pendent data item by minus one to give it the correct sign . Four modes of trans lation ar e available. The mode requir ed

MOVE ALPH NVMERIC - D TO ALPHNLME RI C-X.
MOVE UNSIGNED-I) TO UNSIGN ED-X.
IF SIONED-D NEGATIVE

(MDD to SDF MO VE “-“ TO SIONED.8
precedes.) ELSE

MOV E .‘+,‘ TO SIGNED-S.
MOVE $IGNED-D TO SIGNED-X .
MOVE ALPHNUMERIC-X TO ALPH NUMERIC-A
MOVE UNSIONE D-X TO UNSIGNED -A.

4 ($DF to MAD MOVE SIGNED.X to SIGNED-A.
procudur.) IF SIGNED -S EQUAL. TO

MULTI PLY —I BY SIGNED-A.
I

Figure 2—EsempIs of date trinilatios procudur. used in a Data Translator
Program

4



I
System for Efficient Program Portability 427

IF UNSIGNED-X NUMERIC NEXT SENTENCE ELSE
MOVE UNSIGNEU-X TO PET-FIELD-DATA

(Data Validation MOVE ‘~UNSIGN ED-X ” TO PRT-F IE L I)-NAME
procedure) PERFORM PRINT-VAL IDATION-ERROR.

IF UNSIGNED -A NOT EQUAL TO UNSIGNED-D
MOVE UNSIGNEI )- A TO FLDA-NUMER IC -ISV
MOVE UNSIGNED -A TO FLD A-NUM ER I C-V 18
MOVE UNSIGNE D-A” TI) FIELD-NAME

(Data Ver ification MOVE UNSIGNED-D TO FLD S-NUME RI C-ISV
procedu re) MOVE UNSIONED-D TO FLDB-NUM ERIC-V IS

PERFORM PRINT-VERIFICATION-ERROR.

Figure 3—Example of data validation and data verification procedures used in a data
translator program

is indicated by the following parameter cards: our system for this purpose. Additionally, these procedures
provide the benchmark recipient with a tool to check the

CONVERT MDD SDF various stages of a multi-step processing application for any
CONVERT SDF-MAD processing inconsistencies. Finally, the procedures are used
CONVERT MDD MAD to confirm that data integrity is not lost in either the pro-
CONVERT MAD-8DF gram conversion or data conversion process.

The first mode is applicable to the native compiler, and Processing integrity is verified in two ways through the
translates Machine Dependent Data to Standard Data authentication of data files and comparisons of files after
Format. The second mode is applicable to the target corn- program execution. The authentication of data files consist-s
piler, and translates Standard Data Format to Machine of validating the data item content for conformanc e to

ANSI Data. The last two data translation modes ~~ 
their described data class (i.e., numeric fields contain the

to create files for data verification, data values 0 through 9 and , possibly, a sign). This specific
There sie three modes of data verification. The specific feature was incorporated in the system because it has been

one required is indicated by one of the following parameter found , for examp le, that some compiler implementations
cards: permit spaces as data in numeric fields, or maintain signed

COMPARE MDD-MAD data in fields described as unsigned, and provide the ap-
COMPARE MAD-MADT propriate translation before processing; other implementa-

COMPARE SD F-MAD tions do not. Validation would point out these potential
problem areas.

The first mode of data verification is used to compare The comparison of files after program execution provides
Machine ANSI Data files to Machine Dependent Data files a means of determining not only that all the processing was
The second mode is used to compare two Machine ANSI done, but also that the numerical results of this procemmg
Data files. The last mode is mainly for flexibility, and per- are within the accuracy limits allowed. When any data

comparison is made. discrepancy is produced. A report is made for each field in
for msaffDF to MAD transl ation bd ore aMAD to MADT discrepancyisfound by the data translators, a report of the

The third function performed by the conversion system error, and includes the name of the field as defined in the
is dat a validation. This consists of verifying that the dat a program, its data content (in the case of a comparison , the
content 1. consistent with its class characteristic. (La., flu- field being compared to and the comparing field are both
mesically described fields should contain only numeric data). displayed), the position of the field in the record , and relative
This function is performed automatically In combination record position in the file . Record and error counts are also
with the translation function, or during a separate pam, provided in the report. Figure 4 gives an example of the
using a VALIDATE SDF-DATA parameter. report generated.

Dais s e h & o/ ftca ~son PROG RAM MONITOR

In order to perform a comparative evaluation of the per-
fornance of computer system. through the use of natural One of the principal concerns In using benchmarks as a

that the accuracy of computations is within afl~~~ bIe boun& and whether thsy properiy ~~ eet his futum proc~~~ng needs.

benchmarks, we must eamre that the seine amount of means of evaluating computer performance is whether they
Jwccl.il14 was completed by sfl competing systems, and provide an adequate representation of the user’s workload,

Data comparison and validation procedurse are included In This problem I. not completely resolvable, but an indication



428 National Computer Conference, 1974

I)ATA VALI I)AT I ON/VE RI FICAT ION REPORT

LOGICAL FIELD STARTING FIELD
RECORI) NAME POSITION SIZ E I)ATA CON TENTS

U NSIGNEE)- A 002 1 0006 +000000000000000443.000000000000000000 (INCORRECT)

+000000000000000444.0000000000(xn00000 (CORRECT)
(W)20 AL P }I NU MER IC-A 0001 0020 aaaaaaaacdeaaa,jaw

MACHINE ANSI RECORI~~— 0O4562
M ACHINE DEPENDENT R~~~ORDS — 0O4.~62
ERROR COL’NT-0002

Figure 4—Sample validation/verification report from a data trans lator program

of the processing characteristics of the programs provided (5) Instruction s for use ~f the VP-Routin e.’
for the benchmark can be of value in the evaluation process. (6) A workload processing state ment , which is a table
This data is obtained through a program execution monitor, providing a summary of all the pertinent information

Following program and data conver sion, and before distri- for imp lementation of the benchmark.
bution of the benchmark to the vendors, this monitor is (7) Instructions and sample program for the extraction
applied to the benchmark programs. The monitor, written of the VP-Routine from the population file .
in COBOL, inserts control statements into the benchmark (8) Benchmark it.4ructions.
programs. Execution of the benchmark programs with a (9) Individ ual program documentation , including any
gwen set of data provides a histogram of procedure activity known areas which may cause implementation prob-
in the programs. This, in turn, can be used to determine the lems.
suitability of the benchmarks in representing the user work- (10) For variable length records , or multi ply defined
load, records, a complete COBOL record descri pt ion is

given , or a record layout is provided together with

PACKAGING AND DISTRIBUTION itS record type characteristics.
(11) A system flowchart of the benchmark .

Once the benchmark has been sanitized and run on the (12) Listings of each program .
native system to be assured that processing integrity has
been main tained, the benchmark package is prepared for LIMITATI ONS
distribution. The package includes a source program library,
benchmark data, and documentation .

The source library (population file) will conta in the benèh- Even though the Benchmark Preparation 8ystem resolves
mark programs, data translator programs, the VP-Routine , many of the difficulties involved in program and data
and the operating system control language for the major portability, there are area s in which reprogramming will be
computer systems. The VP-Routine selects the 

~~~~~~~~~~~~~~ 
required for complete conversion. The amount of repro-

from the population file , transforms VP-Routine sensitive grainming depends on the degree to which machine de-
programs to machine dependent programs by satisfying all pendency has been imposed onto the program. I)ata that is
implenwntor defined names in the source program, and not explicitly defined , or features for which ANSI Standard
prepares the job control stream for submission to the opec- COBOL does not have a direct functional replacement
sting system cannot be detected by the sanitation process. The following

Data files for the benchmarks are distributed to the vendor are a few of the known programming, COBOL characteristics,
on magnetic tape, in SDF format . or COBOL compiler implementation practices which have an

Documentation pertaining to the ‘ogiams, dita , instrue- impact on automation of the conversion procem.
tions for implementation on a users system, and all infor-
mation necessary to run the benchmark for a live test (I) Fundions in the native COBOL aoi~ror pro~~rim wf lich

demonstra tion is included in the package. This includes the cannot be dir.dlp repl aced by feshires or .keseet. qf
folio ’ information : the ANSI lanquaQe specif testioa. Such an example

would be the READY TRACE statement or the
(1) Cross reference to data files by reel number. TR4NSFORM verb in IBM Syatem/300 COBOL’
(2) Cross reference to data files by program. The ANSI language specification does not have an
(3) Cross reference to data flies for file name, clement or feature which directly performs these
(4) Detailed i~~ naction. for Implementation of the Data functions. To simulate this function require, manual

Translator/Verification Prcgrs~~ conversion.

‘ 4

System for Efficient ~~~gram Portability 429

(2) Incomp lete o. inadequate record descrip tions. This is CONCLUSIONS
due to describing fields or groups of fields as alpha-
numeric when their true descriptions could include The Benchmark Preparation System was developed to reduce
other forms of data representation. An example of this the nonportabi lity and expense of using nat u ral benchmarks
technique on the IBM 360/370 would be a data field without losing the characteristics of the users worklo ad ic
described as PICTURE X(4), when the data actually terms of processing efficiency and representation . The results
present should be defined as PlC S9(9) COMPU- we have obtained indicate that these objectives can be r u t .
TAT IONAL (binary), or a PlC X(2) definition of ~

Our current test bed is a N avy benchmark containing
data field which is in fact PlC S9(3) COMPUTA- 38 COBOL programs consisting of some 60,000 lines of
TIONAL -3 (packed decimal). The above examples source code, and includes some 150 dat a files. The native
would not only cause the target compiler to incorrectl y system is an IBM 360/50 and the target machines ar e a
allocate storage but also would not provide the ap- u NIVAC 1108 and HIS 6050. These programs and data
propri ate conversion processing , since the data ~ files have been successfully converte d to both the UNIVAC
described as alphanumeric. 1108 and HIS 6050. Pre paration of the benchmark pr ograms ,

(3) Multip ly defined records u ’h~~ ~~~ d(ff ecOnd i~~ et~-~~
development of data tr s.~slatn r/verific ation programs , and

Lures within each record, and do not have a means of the packaging of these were done on a UN I VAC 1108 .
distinguishing between records. The data conversion Approximately 96 percent of the change s made to th o
process is capable of translating multiply defined programs were handled by this system. The remaining chang es
records, but only if they can be identified. (manual) were necessitated by extension features with no

(4) Machine dependencies f ixed into the COBOL prog ram counterparts in the ANSI COBOL standard . Generation of
itself. This would include such things as assuming the the data trans lators and sanitat ion of the benchmark pro-
initial value of a data item, initializing numeric grams for packaging required approximately two computer
storage areas with alphanumeric [iterala representing runs and one man hour of effort per ben chmark program.
a machine ’s internal sign, or using the charact~r set The effort required on each system to set up the VP-Routine ,
to represent non-character machine data. An example and cleanly compile the programs has been aver aging one-
would be: tenth man hour per progr am. Character code translation

posed no problem , as each system had job control card
WORKING -STORA GE SECTION. options for transliteration (i.e., EBCDIC to BCD on th e
77 SIGN-FIELD PlC 8999. IBM/360 and BCD to FIELDATA on the UNIVAC 1108
77 X-FIELD REDEFI NES SIGN-FIELD and IBMC code to HIS 6000 code).

PlC XXX. Based on our efforts , we believe that por tability can be
PROCEDURE DIVI SION. achieved by an automated means without sacrificing the
SECTION-NAME SECTION. efficiency of a computer system.
PA RAGRAP H-L
MOVE +123 to SIGN-FIE LD REFERENC ES
IF X-FIELD EQUAL TO ‘12C’ GO TO—

1. Department of the Navy, .Sp.c~fia,hon , Seiec~io,i and Acq~~iition
Implementations which do not generate positive sign ~ ‘ A vto,sa~w Dot,, Procsujng Eqinpewot (A DPE), SECNAVIN ST
over-punches would require the procedure to be modi- ~~~~~ 1)~C5Iflb5~ 17, 1971.

2. Ickes, Hubert F. and Herbert S. Meitser . Draft Tutorial onfled before the program would function correctly.
~~~ pjg~, ” ANSI Tank Group X3.2F (1970).(5) Collating sequence of f ield, containing tilphantoneric 3. duet of Naval OperaUona~ Information Systems I)ivimon (Op-91),data which are critical to progra m pr ocessing and which COBOL C.uip~~ Val4agson Spatess , VP-Routine oneve guide,

are not comp istdy def ined. This problem is somewhat ~~~~~ 1973.
reduced, however, in that COBOL instructions which ~ ~~~~~~~ Nation al Standard. Inatitute , Insorporated, USA Sia~d-

ant COBOL. X3.23-19e8.may be affected by colisting sequenc e are flagged by 
~~. ~~~~ Sp rse/SSf) Opwotuu ~ Spat.iui PuU Am.rwan Natioøol Stand-the COBOL to COBOL translator. ant COBOL. OC 28-4396-2, IBM Corporation (1970).

6



-~~~~~~~~~~~
. —--—~~~~

BIB’ rOrRAl ’tIIC D~*~~~~jk ft.. 2. 3~~~ecIpi ent S A ccessi o n \oSHEET (J~~J1 FC CTS /TR — 77/~ 8 I 
______________________

~~~~~~~~~ 
~~ ritIe and Subtitle

~~~~~~~~~ 
- 3. Report Date

~~~~ System for Efficient Program Portabilit~j c~_J

5.-il.
~

.
~~~~~~~~~~

, _______

George N./Baird ~~~ L. Arnold~~~~~s~~~~7 
8. Per for ming O r g a n i z a T IJ eU

~~~~~~~~~~lng ~~gan izau on~N~ me and Addre ss 10. Pt~~ec t /T ask/ ~~or k Unit No.

~~ Federal COBOL Compiler Testing Service ~
Department of the Navy 11. Contract/Grant No.
ADPE Selection Office
Washington , D. C. 20376

12. Sponsoring Organization Name and Addre ss 13. Type of Report & Period
ADPE Selection Office Covered
Depar tment of the Navy
Washington , D. C. 20376

IS. Supplementar y Notes

l~~~~bstracts

This technical paper describes a software system (written in COBOL 68 — X3.23—l968)
designed to ease the pains of converting COBOL programs and their related data
to different systems or to differen t software environments within the same com-
puter system . The approach taken is novel in that two processes take place . The
first process is to convert the source programs to a system independent form of
COBOL . As a result of examining the source program during the source program con-
versi on phase , the information found in the File Section is used to produce data
file translation — COBOL programs which can read the data file on the old system,
produce a system independent data file , read the system independent data file on the
new system and convert it to a file on the new system which will take advantage of
the new architecture of the hardware/software . The source program conversion pro—
ceasor took this into account and the converted source program will be able to
pro cess the new file with little or no inodifica1tion.17. Key Wo ods and Doc ument Anrnl y .i~ . 11.. Descriptors

COBOL
Valida tion
Sof tware
Audit Routines
Verifying ~~~~~~

Compilers —

Standards -1$ m~~sc~.
Prograi~~ing Lan guages * ~II IIS~. 0

0

ilk. Iden t ifiers/Op en-End ed Terms

~~~ u rn.  ~~e I

17.. COSATI Fi.ld/Group 09/02 I/ C7 ~ ~ I I
1$. Availabili ty Stst.a. ~t 1~ . Security Class (This 21- No, of Pages —

Report ) 7
Release unlimited 20 Sec y~~ I~~ B ~W~5 22. Fi~ke

Pa*e

~•SM N TIS-IC s~~v , ~~~~~~~ 
uNCLASSIFIED

THIS FORM MAY BE REPRODUCED USC OMU DC 45 5 2 .072

A__ ----



I

4

‘V

J~ 
:

~i



S

..
i.

2

Ii

.1

‘I I

a



- - Il

I

:2

$3

II!

~ L

J



It

_ _  

I
H



F-

-I

if

_



-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
-

v~
_

V _
_ _

—
ad

ii
—

MIT -

s,
~~

.

_

-1— — ~~~~~ _i_~_

